Компьютерные сети Принципы, технологии, протоколы

         

Вычислительные сети явились результатом эволюции


  • Вычислительные сети явились результатом эволюции компьютерных технологий.

  • Вычислительная сеть - это совокупность компьютеров, соединенных линиями связи. Линии связи образованы кабелями, сетевыми адаптерами и другими коммуникационными устройствами. Все сетевое оборудование работает под управлением системного и прикладного программного обеспечения.

  • Основная цель сети - обеспечить пользователям сети потенциальную возможность совместного использования ресурсов всех компьютеров.

  • Вычислительная сеть - это одна из разновидностей распределенных систем, достоинством которых является возможность распараллеливания вычислений, за счет чего может быть достигнуто повышение производительности и отказоустойчивости системы.

  • Важнейший этап в развитии сетей - появление стандартных сетевых технологий типа Ethernet, позволяющих быстро и эффективно объединять компьютеры различных типов.

  • Использование вычислительных сетей дает предприятию следующие возможности:

  • разделение дорогостоящих ресурсов;

  • совершенствование коммуникаций;

  • улучшение доступа к информации;

  • быстрое и качественное принятие решений;

  • свобода в территориальном размещении компьютеров.


  • Задачи надежного обмена двоичными сигналами по линиям связи в локальных сетях решают сетевые адаптеры, а в глобальных сетях - аппаратура передачи данных. Это оборудование кодирует и декодирует информацию, синхронизирует передачу электромагнитных сигналов по линиям связи и проверяет правильность передачи.

  • Программные средства, реализующие простейшую схему удаленного доступа к файлам, включают классические элементы сетевой операционной системы: сервер, клиент и средства транспортировки сообщений по линии связи.

  • Важной характеристикой сети является топология - тип графа, вершинам которого соответствуют компьютеры сети (иногда и другое оборудование, например концентраторы), а ребрам - физические связи между ними. Конфигурация физических связей определяется электрическими соединениями компьютеров между собой и может отличаться от конфигурации логических связей между узлами сети. Логические связи представляют собой маршруты передачи данных между узлами сети.

  • Типовыми топологиями физических связей являются: полносвязная, ячеистая, общая шина, кольцевая топология и топология типа звезда.



  • Для вычислительных сетей характерны как индивидуальные линии связи между компьютерами, так и разделяемые, когда одна линия связи попеременно используется несколькими компьютерами. В последнем случае возникают как чисто электрические проблемы обеспечения нужного качества сигналов при подключении к одному и тому же проводу нескольких приемников и передатчиков, так и логические проблемы разделения времени доступа к этим линиям.

  • Для адресации узлов сети используются три типа адресов: аппаратные адреса, символьные имена, числовые составные адреса. В современных сетях, как правило, одновременно применяются все эти три схемы адресации. Важной сетевой проблемой является задача установления соответствия между адресами различных типов. Эта проблема может решаться как полностью централизованными, так и распределенными средствами.

  • Для снятия ограничений на длину сети и количество ее узлов используется физическая структуризация сети с помощью повторителей и концентраторов.

  • Для повышения производительности и безопасности сети используется логическая структуризация сети, состоящая в разбиении сети на сегменты таким образом, что основная часть трафика компьютеров каждого сегмента не выходит за пределы этого сегмента. Средствами логической структуризации служат мосты, коммутаторы, маршрутизаторы и шлюзы.



  • В компьютерных сетях идеологической основой стандартизации является многоуровневый подход к разработке средств сетевого взаимодействия.

  • Формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называются протоколом.

  • Формализованные правила, определяющие взаимодействие сетевых компонентов соседних уровней одного узла, называются интерфейсом. Интерфейс определяет набор сервисов, предоставляемый данным уровнем соседнему уровню.

  • Иерархически организованный набор протоколов, достаточный для организации взаимодействия узлов в сети, называется стеком коммуникационных протоколов.

  • Открытой системой может быть названа любая система, которая построена в соответствии с общедоступными спецификациями, соответствующими стандартам и принятыми в результате публичного обсуждения всеми заинтересованными сторонами.

  • Модель OSI стандартизует взаимодействие открытых систем. Она определяет 7 уровней взаимодействия: прикладной, представительный, сеансовый, транспортный, сетевой, канальный и физический.

  • Важнейшим направлением стандартизации в области вычислительных сетей является стандартизация коммуникационных протоколов. Наиболее популярными являются стеки: TCP/IP, IPX/SPX, NetBIOS/SMB, DECnet, SNA и OSI.



  • Классифицируя сети по территориальному признаку, различают локальные (LAN), глобальные (WAN) и городские (MAN) сети.

  • LAN - сосредоточены на территории не более 1-2 км; построены с использованием дорогих высококачественных линий связи, которые позволяют, применяя простые методы передачи данных, достигать высоких скоростей обмена данными порядка 100 Мбит/с. Предоставляемые услуги отличаются широким разнообразием и обычно предусматривают реализацию в режиме on-line.

  • WAN - объединяют компьютеры, рассредоточенные на расстоянии сотен и тысяч километров. Часто используются уже существующие не очень качественные линии связи. Более низкие, чем в локальных сетях, скорости передачи данных (десятки килобит в секунду) ограничивают набор предоставляемых услуг передачей файлов, преимущественно не в оперативном, а в фоновом режиме, с использованием электронной почты. Для устойчивой передачи дискретных данных применяются более сложные методы и оборудование, чем в локальных сетях.

  • MAN - занимают промежуточное положение между локальными и глобальными сетями. При достаточно больших расстояниях между узлами (десятки километров) они обладают качественными линиями связи и высокими скоростями обмена, иногда даже более высокими, чем в классических локальных сетях. Как и в случае локальных сетей, при построении MAN уже существующие линии связи не используются, а прокладываются заново.



  • В зависимости от масштаба производственного подразделения, в пределах которого действует сеть, различают сети отделов, сети кампусов и корпоративные сети.

  • Сети отделов используются небольшой группой сотрудников в основном с целью разделения дорогостоящих периферийных устройств, приложений и данных; имеют один-два файловых сервера и не более тридцати пользователей; обычно не разделяются на подсети; создаются на основе какой-либо одной сетевой технологии; могут работать на базе одноранговых сетевых ОС.

  • Сети кампусов объединяют сети отделов в пределах отдельного здания или одной территории площадью в несколько квадратных километров, при этом глобальные соединения не используются. На уровне сети кампуса возникают проблемы интеграции и управления неоднородным аппаратным и программным обеспечением.

  • Корпоративные сети объединяют большое количество компьютеров на всех территориях отдельного предприятия. Для корпоративной сети характерны:

  • масштабность - тысячи пользовательских компьютеров, сотни серверов, огромные объемы хранимых и передаваемых по линиям связи данных, множество разнообразных приложений;

  • высокая степень гетерогенности - типы компьютеров, коммуникационного оборудования, операционных систем и приложений различны;

  • использование глобальных связей - сети филиалов соединяются с помощью телекоммуникационных средств, в том числе телефонных каналов, радиоканалов, спутниковой связи.



  • Качество работы сети характеризуют следующие свойства: производительность, надежность, совместимость, управляемость, защищенность, расширяемость и масштабируемость.

  • Существуют два основных подхода к обеспечению качества работы сети. Первый - состоит в том, что сеть гарантирует пользователю соблюдение некоторой числовой величины показателя качества обслуживания. Например, сети frame relay и АТМ могут гарантировать пользователю заданный уровень пропускной способности. При втором подходе (best effort) сеть старается по возможности более качественно обслужить пользователя, но ничего при этом не гарантирует.

  • К основным характеристикам производительности сети относятся: время реакции, которое определяется как время между возникновением запроса к какому-либо сетевому сервису и получением ответа на него; пропускная способность, которая отражает объем данных, переданных сетью в единицу времени, и задержка передачи, которая равна интервалу между моментом поступления пакета на вход какого-либо сетевого устройства и моментом его появления на выходе этого устройства.

  • Для оценки надежности сетей используются различные характеристики, в том числе: коэффициент готовности, означающий долю времени, в течение которого система может быть использована; безопасность, то есть способность системы защитить данные от несанкционированного доступа; отказоустойчивость
    - способность системы работать в условиях отказа некоторых ее элементов.

  • Расширяемость означает возможность сравнительно легкого добавления отдельных элементов сети (пользователей, компьютеров, приложений, сервисов), наращивания длины сегментов сети и замены существующей аппаратуры более мощной.

  • Масштабируемость означает, что сеть позволяет наращивать количество узлов и протяженность связей в очень широких пределах, при этом производительность сети не ухудшается.

  • Прозрачность - свойство сети скрывать от пользователя детали своего внутреннего устройства, упрощая тем самым его работу в сети.

  • Управляемость сети подразумевает возможность централизованно контролировать состояние основных элементов сети, выявлять и разрешать проблемы, возникающие при работе сети, выполнять анализ производительности и планировать развитие сети.

  • Совместимость означает, что сеть способна включать в себя самое разнообразное программное и аппаратное обеспечение.



  • При построении сетей применяются линии связи, использующие различную физическую среду: телефонные и телеграфные провода, подвешенные в воздухе, медные коаксиальные кабели, медные витые пары, волоконно-оптические кабели, радиоволны.
    Линии связи могут использовать, кроме кабеля, промежуточную аппаратуру, прозрачную для пользователей. Промежуточная аппаратура выполняет две основные функции: усиливает сигналы и обеспечивает постоянную коммутацию между парой пользователей линии.
    В зависимости от типа промежуточной аппаратуры линии связи делятся на аналоговые и цифровые. В аналоговых линиях связи для уплотнения низкоскоростных каналов абонентов в общий высокоскоростной канал используется метод разделения частот (FDM), а в цифровых - метод разделения во времени (TDM).
    Для характеристики способности линии передавать сигналы произвольной формы без значительных искажений применяется ряд показателей, использующих в качестве тестового сигнала синусоиды различной частоты. К этим показателям относятся: амплитудно-частотная характеристика, полоса пропускания и затухание сигнала на определенной частоте.
    В компьютерных сетях применяются кабели, удовлетворяющие определенным стандартам. Современные стандарты определяет характеристики не отдельного кабеля, а полного набора элементов, необходимого для создания кабельного соединения, например шнура от рабочей станции до розетки, самой розетки, основного кабеля, жесткого кроссового соединения и шнура до концентратора. Сегодня наиболее употребительными стандартами являются: американский стандарт EIA/TIA-568A, международный стандарт ISO/IEC 11801, европейский стандарт EN50173, а также фирменный стандарт компании IBM.
    Стандарты определены для четырех типов кабеля: на основе неэкранированной витой пары, на основе экранированной витой пары, коаксиального и волоконно-оптического кабелей.
    Кабель на основе неэкранированной витой пары в зависимости от электрических и механических характеристик разделяется на 5 категорий. Кабели категории 1 применяются там, где требования к скорости передачи минимальны.


    При передаче дискретных данных по узкополосному каналу тональной частоты, используемому в телефонии, наиболее подходящими оказываются способы аналоговой модуляции, при которых несущая синусоида модулируется исходной последовательностью двоичных цифр. Эта операция осуществляется специальными устройствами - модемами.
    Для низкоскоростной передачи данных применяется изменение частоты несущей синусоиды. Более высокоскоростные модемы работают на комбинированных способах квадратурной амплитудной модуляции (QAM), для которой характерны 4 уровня амплитуды несущей синусоиды и 8 уровней фазы. Не все из возможных 32 сочетаний метода QAM используются для передачи данных, запрещенные сочетания позволяют распознавать искаженные данные на физическом уровне.
    На широкополосных каналах связи применяются потенциальные и импульсные методы кодирования, в которых данные представлены различными уровнями постоянного потенциала сигнала либо полярностями импульса или его фронта.
    При использовании потенциальных кодов особое значение приобретает задача синхронизации приемника с передатчиком, так как при передаче длинных последовательностей нулей или единиц сигнал на входе приемника не изменяется и приемнику сложно определить момент съема очередного бита данных.
    Наиболее простым потенциальным кодом является код без возвращения к нулю (NRZ), однако он не является самосинхронизирующимся и создает постоянную составляющую.
    Наиболее популярным импульсным кодом является манчестерский код, в котором информацию несет направление перепада сигнала в середине каждого такта. Манчестерский код применяется в технологиях Ethernet и Token Ring.
    Для улучшения свойств потенциального кода NRZ используются методы логического кодирования, исключающие длинные последовательности нулей. Эти методы основаны:
    на введении избыточных бит в исходные данные (коды типа 4В/5В);
    скрэмблировании исходных данных (коды типа 2В 1Q).
    Улучшенные потенциальные коды обладают более узким спектром, чем импульсные, поэтому они находят применение в высокоскоростных технологиях, таких как FDDI, Fast Ethernet, Gigabit Ethernet.


    Основной задачей протоколов канального уровня является доставка кадра узлу назначения в сети определенной технологии и достаточно простой топологии.
    Асинхронные протоколы разрабатывались для обмена данными между низкоскоростными старт-стопными устройствами: телетайпами, алфавитно-цифровыми терминалами и т. п. В этих протоколах для управления обменом данными используются не кадры, а отдельные символы из нижней части кодовых таблиц ASCII или EBCDIC. Пользовательские данные могут оформляться в кадры, но байты в таких кадрах всегда отделяются друг от друга стартовыми и стоповыми сигналами.
    Синхронные протоколы посылают кадры как для отправки пользовательских данных, так и для управления обменом.
    В зависимости от способа выделения начала и конца кадра синхронные протоколы делятся на символьно-ориентированные и бит-ориентированные. В первых для этой цели используются символы кодов ASCII или EBCDIC, а в последних - специальный набор бит, называемый флагом. Бит-ориентированные протоколы более рационально расходуют поле данных кадра, так как для исключения из него значения, совпадающего с флагом, добавляют к нему только один дополнительный бит, а символьно-ориентированные протоколы добавляют целый символ.
    В дейтаграммных протоколах отсутствует процедура предварительного установления соединения, и за счет этого срочные данные отправляются в сеть без задержек.
    Протоколы с установлением соединения могут обладать многими дополнительными свойствами, отсутствующими у дейтаграммных протоколов. Наиболее часто в них реализуется такое свойство, как способность восстанавливать искаженные и потерянные кадры.
    Для обнаружения искажений наиболее популярны методы, основанные на циклических избыточных кодах (CRC), которые выявляют многократные ошибки.
    Для восстановления кадров используется метод повторной передачи на основе квитанций. Этот метод работает по алгоритму с простоями источника, а также по алгоритму скользящего окна.
    Для повышения полезной скорости передачи данных в сетях применяется динамическая компрессия данных на основе различных алгоритмов. Коэффициент сжатия зависит от типа данных и применяемого алгоритма и может колебаться в пределах от 1:2 до 1:8.


    В сетях для соединения абонентов используются три метода коммутации: коммутация каналов, коммутация пакетов и коммутация сообщений.
    Как коммутация каналов, так и коммутация пакетов может быть либо динамической, либо постоянной.
    В сетях с коммутацией каналов абонентов соединяет составной канал, образуемый коммутаторами сети по запросу одного из абонентов.
    Для совместного разделения каналов между коммутаторами сети несколькими абонентскими каналами используются две технологии: частотного разделения канала (FDM) и разделения канала во времени (TDM). Частотное разделение характерно для аналоговой модуляции сигналов, а временное - для цифрового кодирования.
    Сети с коммутацией каналов хорошо коммутируют потоки данных постоянной интенсивности, например потоки данных, создаваемые разговаривающими по телефону собеседниками, но не могут перераспределять пропускную способность магистральных каналов между потоками абонентских каналов динамически.
    Сети с коммутацией пакетов были специально разработаны для эффективной передачи пульсирующего компьютерного трафика. Буферизация пакетов разных абонентов в коммутаторах позволяет сгладить неравномерности интенсивности трафика каждого абонента и равномерно загрузить каналы связи между коммутаторами.
    Сети с коммутацией пакетов эффективно работают в том отношении, что объем передаваемых данных от всех абонентов сети в единицу времени больше, чем при использовании сети с коммутацией каналов. Однако для каждой пары абонентов пропускная способность сети может оказаться ниже, чем у сети с коммутацией каналов, за счет очередей пакетов в коммутаторах.
    Сети с коммутацией пакетов могут работать в одном из двух режимов: дейтаграммном режиме или режиме виртуальных каналов.
    Размер пакета существенно влияет на производительность сети. Обычно пакеты в сетях имеют максимальный размер в 1-4 Кбайт.
    Коммутация сообщений предназначена для организации взаимодействия пользователей в режиме off-line, когда не ожидается немедленной реакции на сообщение. При этом методе коммутации сообщение передается через несколько транзитных компьютеров, где оно целиком буферизуется на диске.


    При организации взаимодействия узлов в локальных сетях основная роль отводится классическим технологиям Ethernet, Token Ring, FDDI, разработанным более 15 лет назад и основанным на использовании разделяемых сред.
    Разделяемые среды поддерживаются не только классическими технологиями локальных сетей Ethernet, Token Ring, FDDI, но и новыми - Fast Ethernet, l00VG-AnyLAN, Gigabit Ethernet.
    Современной тенденцией является частичный или полный отказ от разделяемых сред: соединение узлов индивидуальными связями (например, в технологии АТМ), широкое использование коммутируемых связей и микросегментации. Еще одна важная тенденция - появление полнодуплексного режима работы практически для всех технологий локальных сетей.
    Комитет IEEE 802.X разрабатывает стандарты, которые содержат рекомендации для проектирования нижних уровней локальных сетей - физического и канального. Специфика локальных сетей нашла свое отражение в разделении канального уровня на два подуровня - LLC и MAC.
    Стандарты подкомитета 802.1 носят общий для всех технологий характер и постоянно пополняются. Наряду с определением локальных сетей и их свойств, стандартами межсетевого взаимодействия, описанием логики работы моста/коммутатора к результатам работы комитета относится и стандартизация сравнительно новой технологии виртуальных локальных сетей VLAN.
    Подкомитет 802.2 разработал и поддерживает стандарт LLC. Стандарты 802.3, 802.4,802.5 описывают технологии локальных сетей, которые появились в результате улучшений фирменных технологий, легших в их основу, соответственно Ethernet, ArcNet, Token Ring.
    Более поздние стандарты изначально разрабатывались не одной компанией, а группой заинтересованных компаний, а потом передавались в соответствующий подкомитет IEEE 802 для утверждения.


    Протокол LLC обеспечивает для технологий локальных сетей нужное качество транспортной службы, передавая свои кадры либо дейтаграммным способом, либо с помощью процедур с установлением соединения и восстановлением кадров.
    LLC предоставляет верхним уровням три типа процедур: процедуру без установления соединения и без подтверждения; процедуру с установлением соединения и подтверждением; процедуру без установления соединения, но с подтверждением.
    Логический канал протокола LLC2 является дуплексным, так что данные могут передаваться в обоих направлениях.
    Протокол LLC в режиме с установлением соединения использует алгоритм скользящего окна.
    Протокол LLC с помощью управляющих кадров имеет возможность регулировать поток данных, поступающих от узлов сети. Это особенно важно для коммутируемых сетей, в которых нет разделяемой среды, автоматически тормозящей работу передатчика при высокой загрузке сети.


    Ethernet - это самая распространенная на сегодняшний день технология локальных сетей. В широком смысле Ethernet - это целое семейство технологий, включающее различные фирменные и стандартные варианты, из которых наиболее известны фирменный вариант Ethernet DIX, 10-мегабитные варианты стандарта IEEE 802.3, а также новые высокоскоростные технологии Fast Ethernet и Gigabit Ethernet. Почти все виды технологий Ethernet используют один и тот же метод разделения среды передачи данных - метод случайного доступа CSMA/CD, который определяет облик технологии в целом.
    В узком смысле Ethernet - это 10-мегабитная технология, описанная в стандарте IEEE 802.3.
    Важным явлением в сетях Ethernet является коллизия - ситуация, когда две станции одновременно пытаются передать кадр данных по общей среде. Наличие коллизий - это неотъемлемое свойство сетей Ethernet, являющееся следствием принятого случайного метода доступа. Возможность четкого распознавания коллизий обусловлена правильным выбором параметров сети, в частности соблюдением соотношения между минимальной длиной кадра и максимально возможным диаметром сети.
    На характеристики производительности сети большое значение оказывает коэффициент использования сети, который отражает ее загруженность. При значениях этого коэффициента свыше 50 % полезная пропускная способность сети резко падает: из-за роста интенсивности коллизий, а также увеличения времени ожидания доступа к среде.
    Максимально возможная пропускная способность сегмента Ethernet в кадрах в секунду достигается при передаче кадров минимальной длины и составляет 14 880 кадр/с. При этом полезная пропускная способность сети составляет всего 5,48 Мбит/с, что лишь ненамного превышает половину номинальной пропускной способности - 10 Мбит/с.
    Максимально возможная полезная пропускная способность сети Ethernet составляет 9,75 Мбит/с, что соответствует использованию кадров максимальной длины в 1518 байт, которые передаются по сети со скоростью 513 кадр/с.
    При отсутствии коллизий и ожидания доступа коэффициент использования сети зависит от размера поля данных кадра и имеет максимальное значение 0,96.


    Технология Token Ring развивается в основном компанией IBM и имеет также статус стандарта IEEE 802.5, который отражает наиболее важные усовершенствования, вносимые в технологию IBM.
    В сетях Token Ring используется маркерный метод доступа, который гарантирует каждой станции получение доступа к разделяемому кольцу в течение времени оборота маркера. Из-за этого свойства этот метод иногда называют детерминированным.
    Метод доступа основан на приоритетах: от 0 (низший) до 7 (высший). Станция сама определяет приоритет текущего кадра и может захватить кольцо только в том случае, когда в кольце нет более приоритетных кадров.
    Сети Token Ring работают на двух скоростях: 4 и 16 Мбит/с и могут использовать в качестве физической среды экранированную витую пару, неэкранированную витую пару, а также волоконно-оптический кабель. Максимальное количество станций в кольце - 260, а максимальная длина кольца - 4 км.
    Технология Token Ring обладает элементами отказоустойчивости. За счет обратной связи кольца одна из станций - активный монитор - непрерывно контролирует наличие маркера, а также время оборота маркера и кадров данных. При некорректной работе кольца запускается процедура его повторной инициализации, а если она не помогает, то для локализации неисправного участка кабеля или неисправной станции используется процедура beaconing.
    Максимальный размер поля данных кадра Token Ring зависит от скорости работы кольца. Для скорости 4 Мбит/с он равен около 5000 байт, а при скорости 16 Мбит/с - около 16 Кбайт. Минимальный размер поля данных кадра не определен, то есть может быть равен 0.
    В сети Token Ring станции в кольцо объединяют с помощью концентраторов, называемых MSAU. Пассивный концентратор MSAU выполняет роль кроссовой панели, которая соединяет выход предыдущей станции в кольце со входом последующей. Максимальное расстояние от станции до MSAU - 100 м для STP и 45 м для UTP.
    Активный монитор выполняет в кольце также роль повторителя - он ресинхронизирует сигналы, проходящие по кольцу.
    Кольцо может быть построено на основе активного концентратора MSAU, который в этом случае называют повторителем.
    Сеть Token Ring может строиться на основе нескольких колец, разделенных мостами, маршрутизирующими кадры по принципу «от источника», для чего в кадр Token Ring добавляется специальное поле с маршрутом прохождения колец.


    Технология FDDI первой использовала волоконно-оптический кабель в локальных сетях, а также работу на скорости 100 Мбит/с.
    Существует значительная преемственность между технологиями Token Ring и FDDI: для обеих характерны кольцевая топология и маркерный метод доступа.
    Технология FDDI является наиболее отказоустойчивой технологией локальных сетей. При однократных отказах кабельной системы или станции сеть, за счет «сворачивания» двойного кольца в одинарное, остается вполне работоспособной.
    Маркерный метод доступа FDDI работает по-разному для синхронных и асинхронных кадров (тип кадра определяет станция). Для передачи синхронного кадра станция всегда может захватить пришедший маркер на фиксированное время. Для передачи асинхронного кадра станция может захватить маркер только в том случае, когда маркер выполнил оборот по кольцу достаточно быстро, что говорит об отсутствии перегрузок кольца. Такой метод доступа, во-первых, отдает предпочтение синхронным кадрам, а во-вторых, регулирует загрузку кольца, притормаживая передачу несрочных асинхронных кадров.
    В качестве физической среды технология FDDI использует волоконно-оптические кабели и UTP категории 5 (этот вариант физического уровня называется TP-PMD).
    Максимальное количество станций двойного подключения в кольце - 500, максимальный диаметр двойного кольца - 100 км. Максимальные расстояния между соседними узлами для многомодового кабеля равны 2 км, для витой пары UPT категории 5-100 м, а для одномодового оптоволокна зависят от его качества.


    Потребности в высокоскоростной и в то же время недорогой технологии для подключения к сети мощных рабочих станций привели в начале 90-х годов к созданию инициативной группы, которая занялась поисками нового Ethernet - такой же простой и эффективной технологии, но работающей на скорости 100 Мбит/с.
    Специалисты разбились на два лагеря, что в конце концов привело к появлению двух стандартов, принятых осенью 1995 года: комитет 802.3 утвердил стандарт Fast Ethernet, почти полностью повторяющий технологию Ethernet 10 Мбит/с, а специально созданный комитет 802.12 утвердил стандарт технологии l00VG-AnyLAN, которая сохраняла формат кадра Ethernet, но существенно изменяла метод доступа.
    Технология Fast Ethernet сохранила в неприкосновенности метод доступа CSMA/CD, оставив в нем тот же алгоритм и те же временные параметры в битовых интервалах (сам битовый интервал уменьшился в 10 раз). Все отличия Fast Ethernet от Ethernet проявляются на физическом уровне.
    В стандарте Fast Ethernet определены три спецификации физического уровня: 100Base-TX для 2-х пар UTP категории 5 или 2-х пар STP Type 1 (метод кодирования 4В/5В), l00Base-FX для многомодового волоконно-оптического кабеля с двумя оптическими волокнами (метод кодирования 4В/5В) и 100Base-T4, работающую на 4-х парах UTP категории 3, но использующую одновременно только три пары для передачи, а оставшуюся - для обнаружения коллизии (метод кодирования 8В/6Т).
    Стандарты l00Base-TX/FX могут работать в полнодуплексном режиме.
    Максимальный диаметр сети Fast Ethernet равен приблизительно 200 м, а более точные значения зависят от спецификации физической среды. В домене коллизий Fast Ethernet допускается не более одного повторителя класса I (позволяющего транслировать коды 4В/5В в коды 8В/6Т и обратно) и не более двух повторителей класса II (не позволяющих выполнять трансляцию кодов).
    Технология Fast Ethernet при работе на витой паре позволяет за счет процедуры автопереговоров двум портам выбирать наиболее эффективный режим работы - скорость 10 Мбит/с или 100 Мбит/с, а также полудуплексный или полнодуплексный режим.
    В технологии l00VG-AnyLAN арбитром, решающим вопрос о предоставлении станциям доступа к разделяемой среде, является концентратор, поддерживающий метод Demand Priority - приоритетные требования. Метод Demand Priority оперирует с двумя уровнями приоритетов, выставляемыми станциями, причем приоритет станции, долго не получающей обслуживания, повышается динамически.
    Концентраторы VG могут объединяться в иерархию, причем порядок доступа к среде не зависит от того, к концентратору какого уровня подключена станция, а зависит только от приоритета кадра и времени подачи заявки на обслуживание.
    Технология l00VG-AnyLAN поддерживает кабель UTP категории 3, причем для обеспечения скорости 100 Мбит/с передает данные одновременно по 4-м парам. Имеется также физический стандарт для кабеля UTP категории 5, кабеля STP Type 1 и волоконно-оптического кабеля.


    Технология Gigabit Ethernet добавляет новую, 1000 Мбит/с, ступень в иерархии скоростей семейства Ethernet. Эта ступень позволяет эффективно строить крупные локальные сети, в которых мощные серверы и магистрали нижних уровней сети работают на скорости 100 Мбит/с, а магистраль Gigabit Ethernet объединяет их, обеспечивая достаточно большой запас пропускной способности.
    Разработчики технологии Gigabit Ethernet сохранили большую степень преемственности с технологиями Ethernet и Fast Ethernet. Gigabit Ethernet использует те же форматы кадров, что и предыдущие версии Ethernet, работает в полнодуплексном и полудуплексном режимах, поддерживая на разделяемой среде тот же метод доступа CSMA/CD с минимальными изменениями.
    Для обеспечения приемлемого максимального диаметра сети в 200 м в полудуплексном режиме разработчики технологии пошли на увеличение минимального размера кадра с 64 до 512 байт. Разрешается также передавать несколько кадров подряд, не освобождая среду, на интервале 8096 байт, тогда кадры не обязательно дополнять до 512 байт. Остальные параметры метода доступа и максимального размера кадра остались неизменными.
    Летом 1998 года был принят стандарт 802.3z, который определяет использование в качестве физической среды трех типов кабеля: многомодового оптоволоконного (расстояние до 500 м), одномодового оптоволоконного (расстояние до 5000 м) и двойного коаксиального (twinax), по которому данные передаются одновременно по двум медным экранированным проводникам на расстояние до 25 м.
    Для разработки варианта Gigabit Ethernet на UTP категории 5 была создана специальная группа 802.3ab, которая уже разработала проект стандарта для работы по 4-м парам UTP категории 5. Принятие этого стандарта ожидается в ближайшее время.


    Кабельная система составляет фундамент любой компьютерной сети. От ее качества зависят все основные свойства сети.
    Структурированная кабельная система представляет собой набор коммуникационных элементов - кабелей, разъемов, коннекторов, кроссовых панелей и шкафов, которые удовлетворяют стандартам и позволяют создавать регулярные, легко расширяемые структуры связей.
    Структурированная кабельная система состоит из трех подсистем: горизонтальной (в пределах этажа), вертикальной (между этажами ) и подсистемы кампуса (в пределах одной территории с несколькими зданиями).
    Для горизонтальной подсистемы характерно наличие большого количества ответвлений и перекрестных связей. Наиболее подходящий тип кабеля - неэкранированная витая пара категории 5.
    Вертикальная подсистема состоит из более протяженных отрезков кабеля, количество ответвлений намного меньше, чем в горизонтальной подсистеме. Предпочтительный тип кабеля - волоконно-оптический.
    Для подсистемы кампуса характерна нерегулярная структура связей с центральным зданием. Предпочтительный тип кабеля - волоконно-оптический в специальной изоляции.
    Кабельная система здания строится избыточной, так как стоимость последующего расширения кабельной системы превосходит стоимость установки избыточных элементов.


    От производительности сетевых адаптеров зависит производительность любой сложной сети, так как данные всегда проходят не только через коммутаторы и маршрутизаторы сети, но и через адаптеры компьютеров, а результирующая производительность последовательно соединенных устройств определяется производительностью самого медленного устройства.
    Сетевые адаптеры характеризуются типом поддерживаемого протокола, производительностью, шиной компьютера, к которой они могут присоединяться, типом приемопередатчика, а также наличием собственного процессора, разгружающего центральный процессор компьютера от рутинной работы.
    Сетевые адаптеры для серверов обычно имеют собственный процессор, а клиентские сетевые адаптеры - нет.
    Современные адаптеры умеют адаптироваться к временным параметрам шины и оперативной памяти компьютера для повышения производительности обмена «сеть-компьютер».
    Концентраторы, кроме основной функции протокола (побитного повторения кадра на всех или последующем порту), всегда выполняют ряд полезных дополнительных функций, определяемых производителем концентратора.
    Автосегментация - одна из важнейших дополнительных функций, с помощью которой концентратор отключает порт при обнаружении разнообразных проблем с кабелем и конечным узлом, подключенным к данному порту.
    В число дополнительных функций входят функции защиты сети от несанкционированного доступа, запрещающие подключение к концентратору компьютеров с неизвестными МАС - адресами, а также заполняющие нулями поля данных кадров, поступающих не к станции назначения.
    Стековые концентраторы сочетают преимущества модульных концентраторов и концентраторов с фиксированным количеством портов.
    Многосегментные концентраторы позволяют делить сеть на сегменты программным способом, без физической перекоммутации устройств.
    Сложные концентраторы, выполняющие дополнительные функции, обычно могут управляться централизованно по сети по протоколу SNMP.


    Логическая структуризация сети необходима при построении сетей средних и крупных размеров. Использование общей разделяемой среды приемлемо только для сети, состоящей из 5-10 компьютеров.
    Деление сети на логические сегменты повышает производительность, надежность, гибкость построения и управляемость сети.
    Для логической структуризации сети применяются мосты и их современные преемники - коммутаторы и маршрутизаторы. Первые два типа устройств позволяют разделить сеть на логические сегменты с помощью минимума средств - только на основе протоколов канального уровня. Кроме того, эти устройства не требуют конфигурирования.
    Логические сегменты, построенные на основе коммутаторов, являются строительными элементами более крупных сетей, объединяемых маршрутизаторами.
    Коммутаторы - наиболее быстродействующие современные коммуникационные устройства, они позволяют соединять высокоскоростные сегменты без блокирования (уменьшения пропускной способности) межсегментного трафика.
    Пассивный способ построения адресной таблицы коммутаторами - с помощью слежения за проходящим трафиком - приводит к невозможности работы в сетях с петлевидными связями. Другим недостатком сетей, построенных на коммутаторах, является отсутствие защиты от широковещательного шторма, который эти устройства обязаны передавать в соответствии с алгоритмом работы.
    Применение коммутаторов позволяет сетевым адаптерам использовать полнодуплексный режим работы протоколов локальных сетей (Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI). В этом режиме отсутствует этап доступа к разделяемой среде, а общая скорость передачи данных удваивается.
    В полнодуплексном режиме для борьбы с перегрузками коммутаторов используется метод управления потоком, описанный в стандарте 802.3х. Он повторяет алгоритмы полной приостановки трафика по специальной команде, известной из технологий глобальных сетей.
    При полудуплексном режиме работы коммутаторы используют для управления потоком при перегрузках два метода: агрессивный захват среды и обратное давление на конечный узел. Применение этих методов позволяет достаточно гибко управлять потоком, чередуя несколько передаваемых кадров с одним принимаемым.


    Коммутаторы связывают процессоры портов по трем основным схемам - коммутационная матрица, общая шина и разделяемая память. В коммутаторах с фиксированным количеством портов обычно используется коммутационная матрица, а в модульных коммутаторах - сочетание коммутационной матрицы в отдельных модулях с общей шиной и разделяемой памятью для связи модулей.
    Для поддержания неблокирующего режима работы коммутатора общая шина или разделяемая память должны обладать производительностью, превышающей сумму производительностей всех портов максимально высокоскоростного набора модулей, которые устанавливаются в шасси.
    Основными характеристиками производительности коммутатора являются: скорость фильтрации кадров, скорость продвижения кадров, общая пропускная способность по всем портам в мегабитах в секунду, задержка передачи кадра.
    На характеристики производительности коммутатора влияют: тип коммутации - «на лету» или с полной буферизацией, размер адресной таблицы, размер буфера кадров.
    Для автоматического поддержания резервных связей в сложных сетях в коммутаторах реализуется алгоритм покрывающего дерева - Spanning Tree Algorithm. Этот алгоритм основан на периодической генерации служебных кадров, с помощью которых выявляются и блокируются петлевидные связи в сети.
    Коммутаторы могут объединять сегменты разных технологий локальных сетей, транслируя протоколы канального уровня в соответствии со спецификацией IEEE 802.1Н. Единственным ограничением трансляции является использование MTU одного размера в соединяемых сегментах.
    Коммутаторы поддерживают разнообразные пользовательские фильтры, основанные на МАС - адресах, а также на содержимом полей протоколов верхних уровней. В последнем случае администратор должен выполнить большой объем ручной работы по заданию положения поля относительно начала кадра и его требуемому значению. Обычно фильтры допускают комбинацию нескольких условий с помощью логических операторов AND и OR.
    Коммутаторы обеспечивают поддержку качества обслуживания с помощью приоритетной обработки кадров. Стандарт 802.1р определяет дополнительное поле, состоящее из 3 бит, для хранения приоритета кадра независимо от технологии сети.
    Технология виртуальных локальных сетей (VLAN) позволяет в сети, построенной на коммутаторах, создать изолированные группы узлов, между которыми не передается любой тип трафика, в том числе и широковещательный. Виртуальные сети являются основой для создания крупных маршрутизируемых сетей и имеют преимущество перед физически изолированными сегментами гибкостью состава, изменяемого программным путем.
    В последнее время наблюдается отчетливая тенденция вытеснения коммутаторами концентраторов с нижних уровней крупных сетей.
    Существуют две основные схемы применения коммутаторов: со стянутой в точку магистралью и с распределенной магистралью. В больших сетях эти схемы применяют комбинированно.


    Составная сеть (internetwork или internet) - это совокупность нескольких сетей, называемых также подсетями (subnet), которые соединяются между собой маршрутизаторами. Организация совместной транспортной службы в составной сети называется межсетевым взаимодействием (internetworking).
    В функции сетевого уровня входит: передача пакетов между конечными узлами в составных сетях, выбор маршрута, согласование локальных технологий отдельных подсетей.
    Маршрут - это последовательность маршрутизаторов, которые должен пройти пакет от отправителя до пункта назначения. Задачу выбора маршрута из нескольких возможных решают маршрутизаторы и конечные узлы на основе таблиц маршрутизации. Записи в таблицу могут заноситься вручную администратором и автоматически протоколами маршрутизации.
    Протоколы маршрутизации (например, RIP или OSPF) следует отличать от собственно сетевых протоколов (например, IP или IPX). В то время как первые собирают и передают по сети чисто служебную информацию о возможных маршрутах, вторые предназначены для передачи пользовательских данных.
    Сетевые протоколы и протоколы маршрутизации реализуются в виде программных модулей на конечных узлах-компьютерах и на промежуточных узлах - маршрутизаторах.
    Маршрутизатор представляет собой сложное многофункциональное устройство, в задачи которого входит: построение таблицы маршрутизации, определение на ее основе маршрута, буферизация, фрагментация и фильтрация поступающих пакетов, поддержка сетевых интерфейсов. Функции маршрутизаторов могут выполнять как специализированные устройства, так и универсальные компьютеры с соответствующим программным обеспечением.
    Для алгоритмов маршрутизации характерны одношаговый и многошаговый подходы. Одношаговые алгоритмы делятся на алгоритмы фиксированной, простой и адаптивной маршрутизации. Адаптивные протоколы маршрутизации являются наиболее распространенными и в свою очередь могут быть основаны на дистанционно-векторных алгоритмах и алгоритмах состояния связей.
    Наибольшее распространение для построения составных сетей в последнее время получил стек TCP/IP.


    В стеке TCP/ IP используются три типа адресов: локальные (называемые также аппаратными), IP-адреса и символьные доменные имена. Все эти типы адресов присваиваются узлам составной сети независимо друг от друга.
    IP-адрес имеет длину 4 байта и состоит из номера сети и номера узла. Для определения границы, отделяющей номер сети от номера узла, реализуются два подхода. Первый основан на понятии класса адреса, второй - на использовании масок.
    Класс адреса определяется значениями нескольких первых бит адреса. В адресах класса А под номер сети отводится один байт, а остальные три байта - под номер узла, поэтому они используются в самых больших сетях. Для небольших сетей больше подходят адреса класса С, в которых номер сети занимает три байта, а для нумерации узлов может быть использован только один байт. Промежуточное положение занимают адреса класса В.
    Другой способ определения, какая часть адреса является номером сети, а какая номером узла, основан на использовании маски. Маска - это число, которое используется в паре с IP-адресом; двоичная запись маски содержит единицы в тех разрядах, которые в IP-адресе должны интерпретироваться как номер сети.
    Номера сетей назначаются либо централизованно, если сеть является частью Internet, либо произвольно, если сеть работает автономно.
    Процесс распределения IP-адресов по узлам сети может быть автоматизирован с помощью протокола DHCP.
    Установление соответствия между IP-адресом и аппаратным адресом (чаще всего МАС - адресом) осуществляется протоколом разрешения адресов ARP, который для этой цели просматривает ARP-таблицы. Если нужный адрес отсутствует, то выполняется широковещательный ARP-запрос.
    В стеке TCP/IP применяется доменная система символьных имен, которая имеет иерархическую древовидную структуру, допускающую использование в имени произвольного количества составных частей. Совокупность имен, у которых несколько старших составных частей совпадают, образуют домен имен. Доменные имена назначаются централизованно, если сеть является частью Internet, в противном случае - локально.
    Соответствие между доменными именами и IP-адресами может устанавливаться как средствами локального хоста с использованием файла hosts, так и с помощью централизованной службы DNS, основанной на распределенной базе отображений «доменное имя - IP-адрес».


    Протокол IP решает задачу доставки сообщений между узлами составной сети. Протокол IP относится к протоколам без установления соединений, поэтому он не дает никаких гарантий надежной доставки сообщений. Все вопросы обеспечения надежности доставки данных в составной сети в стеке TCP/IP решает протокол TCP, основанный на установлении логических соединений между взаимодействующими процессами.
    IP-пакет состоит из заголовка и поля данных. Максимальная длина пакета 65 535 байт, Заголовок обычно имеет длину 20 байт и содержит информацию о сетевых адресах отправителя и получателя, о параметрах фрагментации, о времени жизни пакета, о контрольной сумме и некоторых других. В поле данных IP-пакета находятся сообщения более высокого уровня, например TCP или UDP.
    Вид таблицы IP-маршрутизации зависит от конкретной реализации маршрутизатора, но, несмотря на достаточно сильные внешние различия, в таблицах всех типов маршрутизаторов есть все ключевые поля, необходимые для выполнения маршрутизации.
    Существует несколько источников, поставляющих записи в таблицу маршрутизации. Во-первых, при инициализации программное обеспечение стека TCP/ IP заносит в таблицу записи о непосредственно подключенных сетях и маршрутизаторах по умолчанию, а также записи об особых адресах типа 127.0.0.0. Во-вторых, администратор вручную заносит статические записи о специфичных маршрутах или о маршрутизаторе по умолчанию. В-третьих, протоколы маршрутизации автоматически заносят в таблицу динамические записи о имеющихся маршрутах.
    Эффективным средством структуризации IP-сетей являются маски. Маски позволяют разделить одну сеть на несколько подсетей. Маски одинаковой длины используются для деления сети на подсети равного размера, а маски переменной длины - для деления сети на подсети разного размера. Использование масок модифицирует алгоритм маршрутизации, поэтому в этом случае предъявляются особые требования к протоколам маршрутизации в сети, к техническим характеристикам маршрутизаторов и процедурам их конфигурирования.


    Крупные сети разбивают на автономные системы, в которых проводится общая политика маршрутизации IP-пакетов. Если сеть подключена к Internet, то идентификатор автономной системы назначается в InterNIC.
    Протоколы маршрутизации делятся на внешние и внутренние. Внешние протоколы (EGP, BGP) переносят маршрутную информацию между автономными системами, а внутренние (RIP, OSPF) применяются только в пределах определенной автономной системы.
    Протокол RIP является наиболее заслуженным и распространенным протоколом маршрутизации сетей TCP/IP. Несмотря на его простоту, определенную использованием дистанционно-векторного алгоритма, RIP успешно работает в .небольших сетях с количеством промежуточных маршрутизаторов не более 15.
    RIP-маршрутизаторы при выборе маршрута обычно используют самую простую метрику - количество промежуточных маршрутизаторов между сетями, то есть хопов.
    Версия RIPvl не распространяет маски подсетей, что вынуждает администраторов использовать маски фиксированной длины во всей составной сети. В версии RIPv2 это ограничение снято.
    В сетях, использующих RIP и имеющих петлевидные маршруты, могут наблюдаться достаточно длительные периоды нестабильной работы, когда пакеты зацикливаются в маршрутных петлях и не доходят до адресатов. Для борьбы с этими явлениями в RIP-маршрутизаторах предусмотрено несколько приемов (Split Horizon, Hold Down, Triggered Updates), которые сокращают в некоторых случаях периоды нестабильности.
    Протокол OSPF был разработан для эффективной маршрутизации IP-пакетов в больших сетях со сложной топологией, включающей петли. Он основан на алгоритме состояния связей, который обладает высокой устойчивостью к изменениям топологии сети.
    При выборе маршрута OSPF-маршрутизаторы используют метрику, учитывающую пропускную способность составных сетей.
    Протокол OSPF является первым протоколом маршрутизации для IP-сетей, который учитывает биты качества обслуживания (пропускная способность, задержка и надежность) в заголовке IP-пакета. Для каждого типа качества обслуживания строится отдельная таблица маршрутизации.
    Протокол OSPF обладает высокой вычислительной сложностью, поэтому чаще всего работает на мощных аппаратных маршрутизаторах.


    Стек Novell состоит из четырех уровней: канального, который собственно стеком Novell не определяется; сетевого, представленного протоколом дейтаграмм-ного типа IPX; транспортного, на котором работает протокол надежной передачи данных SPX; прикладного, на котором работает протокол NCP, поддерживающий файловую службу и службу печати, а также протоколы SAP и NDS, выполняющие служебные функции по поиску в сети разделяемых ресурсов.
    Особенностью стека Novell является то, что основной прикладной протокол NCP не пользуется транспортным протоколом SPX, а обращается непосредственно к сетевому протоколу IPX. Это значительно ускоряет работу стека, но усложняет прикладной протокол NCP.
    Сетевой IPX-адрес состоит из номера сети, назначаемого администратором, и номера узла, который в локальных сетях совпадает с аппаратным адресом узла, то есть МАС - адресом. Использование аппаратных адресов узлов на сетевом уровне ускоряет работу протокола, так как при этом отпадает необходимость в выполнении протокола типа ARP. Также упрощается конфигурирование компьютеров сети, так как они узнают свой номер сети от локального маршрутизатора, а номер узла извлекается из сетевого адаптера.
    Недостатком IPX-адресации является ограничение в 6 байт, накладываемое на адрес узла на сетевом уровне. Если какая-либо составная сеть использует аппаратные адреса большего размера (это может произойти, например, в сети Х.25), то протокол IPX не сможет доставить пакет конечному узлу такой сети.
    IPX-маршрутизаторы используют протоколы динамической маршрутизации RIP IPX, являющийся аналогом RIP IP, и NLSP, который во многом похож на протокол OSPF сетей TCP/IP.


    Типичный маршрутизатор представляет собой сложный специализированный компьютер, который работает под управлением специализированной операционной системы, оптимизированной для выполнения операций построения таблиц маршрутизации и продвижения пакетов на их основе.
    Маршрутизатор часто строится по мультипроцессорной схеме, причем используется симметричное мультипроцессирование, асимметричное мультипроцессирование и их сочетание. Наиболее рутинные операции обработки пакетов выполняются программно специализированными процессорами или аппаратно большими интегральными схемами (БИС/ASIC). Более высокоуровневые действия выполняют программно универсальные процессоры.
    По областям применения маршрутизаторы делятся на: магистральные маршрутизаторы, маршрутизаторы региональных подразделений, маршрутизаторы удаленных офисов и маршрутизаторы локальных сетей - коммутаторы 3-го уровня.
    Основными характеристиками маршрутизаторов являются: общая производительность в пакетах в секунду, набор поддерживаемых сетевых протоколов и протоколов маршрутизации, набор поддерживаемых сетевых интерфейсов глобальных и локальных сетей.
    • К числу дополнительных функций маршрутизатора относится одновременная поддержка сразу нескольких сетевых протоколов и нескольких протоколов маршрутизации, возможность приоритетной обработки трафика, разделение функций построения таблиц маршрутизации и продвижения пакетов между маршрутизаторами разного класса на основе готовых таблиц маршрутизации.

  • Основной особенностью коммутаторов 3-го уровня является высокая скорость выполнения операций маршрутизации за счет их перенесения на аппаратный уровень - уровень БИС/ASIC.
    Многие фирмы разработали собственные протоколы ускоренной маршрутизации долговременных потоков в локальных сетях, которые маршрутизируют только несколько первых пакетов потока, а остальные пакеты коммутируют на основе МАС - адресов.
    Корпоративные многофункциональные концентраторы представляют собой устройства, в которых на общей внутренней шине объединяются модули разного типа - повторители, мосты, коммутаторы и маршрутизаторы. Такое объединение дает возможность программного конфигурирования сети с определением состава подсетей и сегментов вне зависимости от из физического подключения к тому или иному порту устройства.


    Глобальные компьютерные сети (WAN) используются для объединения абонентов разных типов: отдельных компьютеров разных классов - от мэйнфреймов до персональных компьютеров, локальных компьютерных сетей, удаленных терминалов.
    Ввиду большой стоимости инфраструктуры глобальной сети существует острая потребность передачи по одной сети всех типов трафика, которые возникают на предприятии, а не только компьютерного: голосового трафика внутренней телефонной сети, работающей на офисных АТС (РВХ), трафика факс-аппаратов, видеокамер, кассовых аппаратов, банкоматов и другого производственного оборудования.
    Для поддержки мультимедийных видов трафика создаются специальные технологии: ISDN, B-ISDN. Кроме того, технологии глобальных сетей, которые разрабатывались для передачи исключительно компьютерного трафика, в последнее время адаптируются для передачи голоса и изображения. Для этого пакеты, переносящие замеры голоса или данные изображения, приоритезируются, а в тех технологиях, которые это допускают, для их переноса создается соединение с заранее резервируемой пропускной способностью. Имеются специальные устройства доступа - мультиплексоры «голос - данные» или «видео - данные», которые упаковывают мультимедийную информацию в пакеты и отправляют ее по сети, а на приемном конце распаковывают и преобразуют в исходную форму - голос или видеоизображение.
    Глобальные сети предоставляют в основном транспортные услуги, транзитом перенося данные между локальными сетями или компьютерами. Существует нарастающая тенденция поддержки служб прикладного уровня для абонентов глобальной сети: распространение публично-доступной аудио-, видео- и текстовой информации, а также организация интерактивного взаимодействия абонентов сети в реальном масштабе времени. Эти службы появились в Internet и успешно переносятся в корпоративные сети, что называется технологией intranet.
    Все устройства, используемые для подключения абонентов к глобальной сети, делятся на два класса: DTE, собственно вырабатывающие данные, и DCE, служащие для передачи данных в соответствии с требованиями интерфейса глобального канала и завершающие канал.


    Выделенные каналы широко используются для образования глобальных связей между удаленными локальными сетями.
    Выделенные каналы делятся на аналоговые и цифровые в зависимости от аппаратуры длительной коммутации. В аналоговых каналах используются FDM-коммутаторы, а в цифровых - TDM. Ненагруженные каналы не проходят через мультиплексоры и коммутаторы и используются чаще всего как абонентские окончания для доступа к глобальным сетям.
    Аналоговые каналы делятся на несколько типов: в зависимости от полосы пропускания - на каналы тональной частоты (3100 Гц) и широкополосные каналы (48 кГц), в зависимости от типа окончания - на каналы с 4-проводным окончанием и каналы с 2-проводным окончанием.
    Для передачи компьютерных данных по аналоговым каналам используются модемы - устройства, относящиеся к типу DCE. Модемы для работы на выделенных каналах бывают следующих типов:
    асинхронные, асинхронно-синхронные и синхронные модемы;
    модемы для 4- и 2-проводных окончаний;
    модемы, работающие только в полудуплексном режиме, и дуплексные модемы;
    модемы, поддерживающие протоколы коррекции ошибок;
    широкополосные модемы и модемы для канала тональной частоты.

    Широкополосные модемы работают только по 4-проводным окончаниям в дуплексном синхронном режиме. Многие модели модемов для тонального канала могут работать в различных режимах, совмещая, например, поддержку асинхронного и синхронного режимов работы, 4- и 2-проводные окончания. Стандарт V.34+ является наиболее гибким и скоростным стандартом для модемов тонального канала, он поддерживает как выделенные, так и коммутируемые 2-проводные окончания.
    Цифровые выделенные каналы образуются первичными сетями двух поколений технологии - PDH и SONET/SDH. Эти технологии существуют в двух вариантах - североамериканском и европейском. Последний является также международным, соответствующим рекомендациям ITU-T. Два варианта технологий PDH несовместимы.
    В цифровых первичных сетях используется иерархия скоростей каналов, с помощью которой строятся магистральные каналы и каналы доступа.


    Сети с коммутацией каналов используются в корпоративных сетях в основном для удаленного доступа многочисленных домашних пользователей и гораздо реже - для соединения локальных сетей.
    Отличительными особенностями всех сетей с коммутацией каналов являются: работа в режиме установления соединений, возможность блокировки вызова конечным абонентом или промежуточным коммутатором, необходимость использования на обоих концах сети устройств, поддерживающих одну и ту же скорость передачи данных, так как этот вид сетей не выполняет промежуточную буферизацию данных.
    Сети с коммутацией каналов делятся на аналоговые и цифровые. Аналоговые сети могут использовать аналоговую (FDM) и цифровую (TDM) коммутацию, но в них всегда абонент подключен по аналоговому 2-проводному окончанию. В цифровых сетях мультиплексирование и коммутация всегда выполняются по способу коммутации TDM, а абоненты всегда подключаются по цифровому абонентскому окончанию (DSL).
    Аналоговые сети обеспечивают вызов посредством импульсного или тонового набора номера с частотой 10 Гц, причем тоновый набор примерно в 5 раз быстрее импульсного.
    Аналоговые сети используют электромеханические коммутаторы, создающие большие помехи, и электронные программно-управляемые коммутаторы. При работе электронного коммутатора в режиме частотного уплотнения (FDM) создаются дополнительные помехи при демультиплексировании и мультиплексировании абонентских каналов.
    Модемы для работы по коммутируемым аналоговым телефонным каналам должны поддерживать функцию автовызова удаленного абонента. При асинхронном интерфейсе модем использует для этого команды Hayes-совместимых модемов, а при синхронном интерфейсе - стандарт V.25 или V.25 bis.
    Основные стандарты модемов для коммутируемых каналов тональной частоты - это стандарты V.34+, V.90, V.42 и V.42 bis. Стандарт V.34+ является общим стандартом для работы по выделенным и коммутируемым каналам при 2-проводном окончании. Стандарт V.42 определяет протокол коррекции ошибок LAP-M из семейства HDLC, а стандарт VC.42 bis - метод компрессии данных при асинхронном интерфейсе.


    К технологиям глобальных сетей с коммутацией пакетов относятся сети Х.25, frame relay, SMDS, АТМ и TCP/IP. Все эти сети, кроме сетей TCP/IP, используют маршрутизацию пакетов, основанную на виртуальных каналах между конечными узлами сети.
    Сети TCP/IP занимают особое положение среди технологий глобальных сетей, так как они выполняют роль технологии объединения сетей любых типов, в том числе и сетей всех остальных глобальных технологий. Таким образом, сети TCP/ IP относятся к более высокоуровневым технологиям, чем технологии собственно глобальных сетей.
    Техника виртуальных каналов заключается в разделении операций маршрутизации и коммутации пакетов. Первый пакет таких сетей содержит адрес вызываемого абонента и прокладывает виртуальный путь в сети, настраивая промежуточные коммутаторы. Остальные пакеты проходят по виртуальному каналу в режиме коммутации на основании номера виртуального канала, который является локальным адресом для каждого порта каждого коммутатора.
    Техника виртуальных каналов имеет преимущества и недостатки по сравнению с техникой маршрутизации каждого пакета, характерной для сетей IP или IPX. Преимуществами являются: ускоренная коммутация пакетов по номеру виртуального канала, а также сокращение адресной части пакета, а значит, и избыточности заголовка. К недостаткам следует отнести невозможность распараллеливания потока данных между двумя абонентами по параллельным путям, а также неэффективность установления виртуального пути для кратковременных потоков данных.
    Сети Х.25 относятся к одной из наиболее старых и отработанных технологий глобальных сетей. Трехуровневый стек протоколов сетей Х.25 хорошо работает на ненадежных зашумленных каналах связи, исправляя ошибки и управляя потоком данных на канальном и пакетном уровнях.
    Сети Х.25 поддерживают групповое подключение к сети простых алфавитно-цифровых терминалов за счет включения в сеть специальных устройств PAD, каждое из которых представляет собой особый вид терминального сервера.
    На надежных волоконно-оптических каналах технология Х.25 становится избыточной и неэффективной, так как значительная часть работы ее протоколов ведется «вхолостую».


    Удаленный доступ характеризуется использованием глобальных транспортных служб, несимметричностью взаимодействия и большим количеством удаленных пользователей.
    При удаленном доступе в основном используются аналоговые телефонные сети и ISDN - ввиду их распространенности и невысокого уровня оплаты при соединениях небольшой длительности.
    Удаленные пользователи подключаются к специальному устройству центральной сети - серверу удаленного доступа (RAS), которое работает в режиме маршрутизатора или шлюза в зависимости от протоколов, используемых удаленным пользователем.
    Наиболее универсальным режимом удаленного доступа является режим удаленного узла, при котором компьютер пользователя является узлом локальной сети предприятия со всеми его возможностями, но только подключенным к сети через низкоскоростной канал по протоколу РРР.
    Связь с центральной локальной сетью по инициативе удаленного пользователя называется режимом dial-in (основной режим), а по инициативе пользователя центральной сети - dial-out.
    Режимы терминального доступа и удаленного управления позволяют удаленному пользователю подключиться к компьютеру центральной сети в режиме, имитирующем работу локального терминала. Этот режим очень экономно расходует полосу пропускания глобального канала и рекомендуется для тех случаев, когда необходим низкоскоростной канал - 4800 или 9600 бит/с.
    Для удаленного доступа может использоваться режим электронной почты, который автоматически поддерживается многими приложениями, в том числе СУБД, для получения запросов и отправки ответов.
    Для экономичного удаленного доступа в последнее время часто используется двухступенчатая схема доступа, в которой на первом этапе удаленный пользователь подключается через местную телефонную сеть к местному поставщику услуг Internet, а через Internet выполняется второй этап подключения - к центральной сети, расположенной в другом городе или другой стране.
    Для скоростного доступа к Internet через инфраструктуру абонентских окончаний телефонных аналоговых сетей или сетей кабельного телевидения разработаны новые технологии цифрового абонентского окончания - технологии *DSL, из которых наибольший интерес представляет технология асимметричного доступа ADSL.


    Желательно, чтобы системы управления сетями выполняли все пять групп функций, определенных стандартами ISO/ITU-T для систем управления объектами любого типа.
    Система управления большой сетью должна иметь многоуровневую иерархическую структуру в соответствии со стандартами Telecommunication Management Network (TMN), позволяющую объединить разрозненные системы управления элементами сети в единую интегрированную систему.
    В основе всех систем управления сетями лежит схема «агент - менеджер». Эта схема использует абстрактную модель управляемого ресурса, называемую базой управляющей информации - Management Information Base, MIB.
    Агент взаимодействует с управляемым ресурсом по нестандартному интерфейсу, а с менеджером - по стандартному протоколу через сеть.
    В больших системах управления используется несколько менеджеров, которые взаимодействуют друг с другом по одной из двух схем - одноранговой и иерархической.
    Иерархическая схема взаимодействия менеджеров соответствует стандартам TMN и является более перспективной.
    При построении систем управления активно используется платформенный подход. Платформа системы управления выполняет для менеджеров роль операционной системы для обычных приложений, так как обеспечивает разработчика менеджеров набором полезных системных вызовов общего для любой системы управления назначения.


    Существуют два популярных семейства стандартов систем управления: стандарты Internet, описывающие системы управления на основе протокола SNMP, и международные стандарты управления открытых систем (OSI), разработанные ISO и ITU-T, опирающиеся на протокол управления CMIP. Семейство стандартов Internet специфицирует минимум аспектов и элементов системы управления, а семейство стандартов ISO/ITU-T - максимум.
    Системы управления SNMP основаны на следующих концепциях, ориентированных на минимальную загрузку управляемых устройств:
    агент выполняет самые простые функции и работает в основном по инициативе менеджера;
    система управления состоит из одного менеджера, который периодически опрашивает всех агентов;
    протокол взаимодействия между агентом и менеджером SNMP опирается на простой ненадежный транспортный протокол UDP (для разгрузки управляемого устройства) и использует два основных типа команд - get для получения данных от агента и set для передачи управляющих воздействий агенту;
    агент может послать данные менеджеру по своей инициативе с помощью команды trap, но число ситуаций, в которых он применяет эту команду, очень невелико

    Базы управляющей информации MIB в стандартах Internet состоят из дерева атрибутов, называемых объектами и группами объектов.
    Первые MIB Internet были ориентированы на управление маршрутизаторами: MIB-I - только контроль, MIB-II - контроль и управление. Более поздняя разработка RMON MIB была направлена на создание интеллектуальных агентов, контролирующих нижний уровень, - интерфейсы Ethernet и Token Ring. Имена объектов стандартных MIB Internet зарегистрированы в дереве регистрации имен стандартов ISO.
    Стандарты ISO/ITU-T для представления управляемых устройств используют объектно-ориентированный подход. Определено несколько суперклассов обобщенных управляемых объектов, на основании которых путем наследования свойств должны создаваться более специфические классы объектов.
    Для описания управляемых объектов OSI разработаны правила GDMO, основанные на формах определенной структуры, заполняемых с помощью языка ASN.1.
  • Для представления знаний об управляемых объектах, агентах и менеджерах системы управления OSI используется три древовидные базы данных: дерево наследования, которое описывает отношения наследования между классами объектов, дерево включения, которое описывает отношения соподчинения между конкретными элементами системы управления, и дерево имен, которое определяет иерархические имена объектов в системе.
    Протокол CMIP, который является протоколом взаимодействия между агентами и менеджерами системы управления OSI, позволяет с помощью одной команды воздействовать сразу на группу агентов, применив такие опции, как обзор и фильтрация.


    Мониторинг и анализ сети представляют собой важные этапы контроля работы сети. Для выполнения этих этапов разработан ряд средств, применяемых автономно в тех случаях, когда применение интегрированной системы управления экономически неоправданно.
    В состав автономных средств мониторинга и анализа сети входят встроенные средства диагностики, анализаторы протоколов, экспертные системы, сетевые анализаторы, кабельные сканеры и тестеры, многофункциональные приборы.
    Анализаторы протоколов чаще всего представляют собой специальное программное обеспечение для персональных компьютеров и ноутбуков, которое переводит сетевой адаптер компьютера в режим «беспорядочного» захвата всех кадров. Анализатор протоколов выполняет декодирование захваченных кадров для вложенных пакетов протоколов всех уровней, включая прикладной.
    Сетевые анализаторы представляют собой прецизионные приборы для сертификации кабельных систем по международным стандартам. Кроме того, эти устройства могут выполнять некоторые функции анализаторов протоколов.
    Кабельные сканеры являются портативными приборами, которые могут измерить электрические параметры кабелей, а также обнаружить место повреждения кабеля. Кабельные тестеры представляют собой наиболее простые портативные приборы, способные обнаружить неисправность кабеля.
    Многофункциональные портативные приборы сочетают в себе функции кабельных сканеров и анализаторов протоколов. Они снабжены многострочными дисплеями, контекстно-чувствительной системой помощи, встроенным микропроцессором с программным обеспечением и позволяют выполнять комплексную проверку сегментов сети на всех уровнях, от физического (что не умеют делать анализаторы протоколов), до прикладного. Отличаются от анализаторов протоколов поддержкой только базового набора протоколов локальных сетей.

    Содержание раздела